Category Archives: GigaPan

GigaPan VFE resources for the SGTF 2018

Wind River Canyon, Wyoming (Flash-based)

Wind River Canyon, Wyoming (HTML5-based)

Massanutten Synclinorium, Virginia (Flash-based)

Massanutten Synclinorium, Virginia (HTML5-based)

Rathlin Island: kilometer to micron (Flash-based)

Rathlin Island: kilometer to micron (HTML5-based)

Sedimentary deposits in the Canadian Rockies (Flash-based)

Sedimentary deposits in the Canadian Rockies (HTML5-based)

Siccar Point, Scotland (HTML5-based, including 360° spherical photos and 3D models)

Rock identification review exercise 1 via 3D models

Metamorphic rocks virtual collection (Flash-based)

Metamorphic rocks virtual collection (HTML5-based)

Sediment samples virtual collection (Google spreadsheet w/ links)

Fake field trip 1: Geologic history of a cross-section (Externally hosted; Flash based)

GIGAmacro viewer demo: collection of images related to the Spechty Kopf diamictite & related units, West Virginia (best functionality in Chrome)

Canadian Rockies GigaPan-based virtual field experience

The image below links to a KMZ file (3.76 MB) that can be used as a basis for a Canadian Rockies virtual field experience (VFE). The VFE consists principally of embedded GigaPan imagery, but there are also some regular-resolution photographs and two geologic base maps, one for western Alberta, and one for eastern British Columbia. There are 85 total GigaPans in this trip, arranged in chronological order of principal themes.

Summary: The Canadian Rockies are a world-class example of a fold-and-thrust belt. The geologic story begins in the Neoproterozoic with sedimentary deposition that continued until the Cretaceous, with most exposed sedimentary rocks being Paleozoic in age. Notable in particular is the Cambrian section, which includes the soft-bodied fossils of the Burgess Shale. Deformation associated with the accretion of exotic terranes west of the Rocky Mountain Trench during the Laramide Orogeny folded, cleaved, and faulted these strata toward the Western Interior Seaway. During the Pleistocene, extensive glaciation sculpted the landscape into a classic suite of alpine glacial geomorphological features. Many glaciers still exist, and can be viewed from the excellent roadways of the Canadian national park system. Recently, episodes of catastrophic flooding have dramatically altered low-lying valley regions, especially in the Canmore and Evan Thomas area. All of these features can be seen in whole or in part using this VFE platform.


Here’s a video preview of the trip:

Questions, suggestions, critique, and comment should be directed to Callan Bentley.

Users are welcome to modify the VFE to suit their needs. If you develop any ancillary assignments or student worksheets, please share them here.

Mid-Atlantic Geo-Image Collection (M.A.G.I.C.)

The Northern Virginia Community College team has been busy adding new images to their online repository of geological GigaPans. As of August 1, 2014, their Mid-Atlantic Geo-Image Collection (M.A.G.I.C.) includes 754 total GigaPans of geologic imagery (620 billion pixels), with a total of just over half a million views, with an average of 483 views per image. Each GigaPan is a large (sometimes extremely large) image that users can explore on their computer screen, zooming in to see detail, or zooming out to see context. The user-driven exploration of GigaPans makes them a favorite medium for virtual field trips. Users are guaranteed to find something useful among these many images. For increased utility, we have tagged and organized them into several themes and sub-themes: by scale of image, by rock type (sedimentary, igneous, etc.), by place (West Texas, Wind River Canyon, Canadian Rockies, Blue Ridge, etc.), by time (Archean, Cambrian, Triassic, etc.), and by being relevant to one of our many themes (unconformities, stromatolites, primary sedimentary structures, etc.). The links below will take you to some of these themed sub-collections, dubbed “galleries” by GigaPan.

Here are a few examples of new MAGIC geo-imagery from the past two months:

Students Robin Rohrback-Schiavone, Alan Pitts, Sam Adler, Chris Johnson, and Joshua Benton contributed imagery and curatorial input to the collection. Jay Kaufman (University of Maryland), Aaron Barth (Oregon State University) and Dan Doctor (USGS Reston) contributed additional imagery.

If you have suggestions about other themes to emphasize, or sites to include, please contact NOVA PI Callan Bentley with your ideas:

By scale:

By rock type:

Other relevant “stuff”:

Themed collections:

Special rock units:

By place:

By geologic province

By time: